
J Glob Optim (2007) 37:159–175
DOI 10.1007/s10898-006-9042-z

O R I G I NA L PA P E R

Generating functions and the performance
of backtracking adaptive search

W. Baritompa · D. W. Bulger · G. R. Wood

Received: 20 March 2004 / Accepted: 5 May 2006 /
Published online: 7 September 2006
© Springer Science+Business Media B.V. 2006

Abstract Backtracking adaptive search is a simplified stochastic optimisation pro-
cedure which permits the acceptance of worsening objective function values. Key
properties of backtracking adaptive search are defined and obtained using generating
functions. Examples are given to illustrate the use of this methodology.

Keywords Adaptive search · Backtracking · Global optimization · Hesitant adaptive
search · Markov process

AMS 1991 Subject Classification 90C65 · 90C30 · 65K05

1 Introduction

Backtracking adaptive search (BAS) has been introduced in [7] and used in [6] as
an initial model for the study of the convergence behaviour of stochastic global opti-
misation algorithms. In this paper, we develop tools to examine the performance of
BAS. Specifically, we consider and link three performance measures: the distribution
of objective function values at a given iteration, the probability that the algorithm has
reached a pre-set level (the success rate) at a given iteration, and the distribution of
the number of iterations until a preset level is reached.

In [7] a first principles approach (of calculating the expectation of the exponential
function a random variable) was used to produce the factorial moment generating
function for the number of iterations to first reach a preset level. This paper, com-

W. Baritompa (B)
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
E-mail: b.baritompa@math.canterbury.ac.nz

D. W. Bulger
Department of Statistics, Macquarie University, NSW 2109, Australia

G. R. Wood
Department of Statistics, Macquarie University, NSW 2109, Australia

160 J Glob Optim (2007) 37:159–175

putes a number of generating functions using a formal power series approach and
thus complements that work by relating the generating function found there to other
generating functions of interest. These generating functions are used to examine the
performance of BAS, and provide a tool to prove a surprising performance result.

Backtracking adaptive search is reviewed in Sect. 2 and generating functions intro-
duced and analysed in Sect. 3. In Sect. 4, we illustrate the results using simple but
edifying examples. Section 5, provides a general performance result. The paper con-
cludes with a summary.

2 Backtracking adaptive search and its relevance to global optimization

Our interest centres on the global optimisation problem

minimisef (x), subject to x ∈ S,

where S is a measurable space and f : S → [y∗, y∗] is a measurable function. An
algorithm will be considered to terminate upon sampling a function value sufficiently
small. We begin with some background to the current study.

This work has its origins with Zabinsky and Smith [8], where attention was first
drawn to the remarkable global optimization performance, on the above problem, of
the algorithm termed pure adaptive search (PAS). At the kth iteration, PAS selects
a point Xk from the subset of strictly improving points in the domain, according to
the restriction of a probability measure δ on S. Under appropriate conditions it was
shown to have complexity, which is linear in the dimension of the domain. The key
to the analysis was the study of the records of a related non-homogeneous Poisson
process.

Subsequently there have been two generalisations of PAS, movements towards
more realistic models for objective function values arising from stochastic optimisa-
tion algorithms. Hesitant adaptive search (HAS) [1] allows the algorithm to pause at
the current level, while backtracking adaptive search (BAS) [7] allows acceptance of
worsening values.

We are the first to acknowledge that BAS is still an inadequate model. But it is the
best, we have to date; it models the important observed behaviour of backtracking
and is capable of full analysis. Better models, more accurately capturing the behav-
iour of real algorithms and yielding to analysis, are needed. It is hoped that this paper,
presenting a second and quite different approach to the analysis of BAS to that given
in [7], will assist in stimulating such developments.

2.1 Importance to theory of global optimization

The analysis here is part of an approach, first exposited in [6], to understanding the
convergence of global optimisation algorithms. The approach is a familiar one: a para-
metric model for variable behaviour (here the sequence of objective function values)
is established, data (objective function values from a run of a stochastic algorithm)
is used to estimate the model parameters, then the fitted model is used to approxi-
mate the behaviour of the real algorithm. Such a model allows us to give an answer
the question “How long must, we run an algorithm to be within a given distance of
the global optimum?”, a key question in global optimisation. The method relies on
extrapolation, so is dependent on early patterns in objective function values, used

J Glob Optim (2007) 37:159–175 161

to estimate model parameters, being continued later in the run. The performance of
BAS presented in this paper provides a realistic benchmark.

Before, we launch into the paper proper, we offer a philosophical comment. We con-
sider it important to work at all levels in global optimisation, from the very practical
to the very theoretical. This paper verges towards the latter end, unapologetically.
Theory development generally follows application; in this case, analysis of adaptive
search methods are preceding application. It is interesting to note, however, that
recently they are showing scope for practical application in [2, 4].

2.2 A description of backtracking adaptive search

We now present an informal description of BAS, followed by a formal description. In
BAS, the first sample point is chosen according to δ. Each following iteration Xk+1
either worsens (with probability w(Xk)), hesitates (with probability h(Xk)) or betters
(with probability b(Xk)). Once, the decision has been made to either worsen or better,
Xk+1 is chosen according to the restriction of δ to the current worsening or bettering
set in S, respectively. Note that w + h + b ≡ 1. The PAS is the special case of BAS
occurring when h ≡ 0 and w ≡ 0, while HAS is the special case of BAS occurring
when only w ≡ 0. We now present BAS formally.

Let w, h and b be non-negative real valued functions on [y∗, y∗] with w + h + b ≡ 1.
The worsening function w is assumed to be integrable, while the bettering function b
is assumed to be integrable and for all y, bounded away from zero on (y, y∗].
2.3 Backtracking adaptive search

Step 1 Set k = 0. Generate X0 according to δ. Set Y0 = f (X0).

Step 2 Generate Xk+1 according to the normalised restriction of δ to

{x ∈ S : f (x) > Yk} with probability w(Yk),
{x ∈ S : f (x) = Yk} with probability h(Yk),
{x ∈ S : f (x) < Yk} with probability b(Yk).

Set Yk+1 = f (Xk+1).

Step 3 If a stopping criterion is met, stop. Otherwise, increment k and return to Step 2.

The BAS is considered to have converged when it first passes below some value
y with y∗ < y ≤ y∗, that is, when Yk ≤ y for the first time. We denote the termi-
nation region [y∗, y] by T and let N(y) be the number of iterations before landing
in the termination region. Thus N(y) = min{k : Yk ≤ y}, since, the first iteration is
denoted Y0.

An extremely convenient summary measure is ρ, the range probability measure
defined by ρ(A) = δ(f −1[A]) for each measurable subset A of [y∗, y∗] (for brevity,
we write ρ({t}) as ρ(t)). We assume throughout that ρ(T) > 0. The range cumulative
distribution function (CDF) associated with ρ we denote p, so for t ∈ IR,

p(t) = ρ((−∞, t]) = δ
(

f −1(−∞, t]
)

.

In this paper, we assume that p is continuous and that the probability density function
fk of Yk exists. Thus, without loss of generality we can deal with a standardised BAS

162 J Glob Optim (2007) 37:159–175

range process. That is, Y0, Y1, . . . , is a Markov chain on [0, 1] with uniform initial
distribution (so Y0 ∼ λ, where λ is Lebesgue measure on [0, 1]) and kernel

β(x, A) = b(x)
λ(A ∩ [0, x))

x
+ h(x)δx(A) + w(x)

λ(A ∩ (x, 1])
1 − x

.

We let fn(y) and Fn(y) be the probability distribution function (PDF) and CDF,
respectively, for Yn. The Markov kernel for BAS gives the recursion fn+1(y) =∫ 1

x=0 fn(x) dβ(x, y), which in this case gives f0(y) = 1 and

fn+1(y) =
∫ 1

y

b(x)

x
fn(x)dx + fn(y)h(y) +

∫ y

0

w(x)

1 − x
fn(x)dx. (1)

Intuitively, the new PDF fn+1(y)1 at y is found by averaging over all possible states
x at the previous iteration. Here, x ∈ [0, y) can lead to y if worsening occurs, x ∈ (y, 1]
can lead to y if bettering occurs, and y leads to itself if hesitation happens.

3 Main results

Two measures are of interest when, we run a stochastic global minimisation algo-
rithm. First, we want to know the distribution of the minimum value achieved at the
kth iteration, so we compute the cumulative probabilities P(min{Y0, Y1, . . . , Yk} ≤ y)

as y varies. Second, we want to know the distribution of the number of iterations N(y)

immediately prior to reaching a preset level y, so we compute the probability masses
P(N(y) = k) as k varies. Note, that the first random variable is continuous and the
second discrete.

A useful tool for finding these values and others proves to be a generating function.
Given functions ak(y), the formal infinite series

G(y, z) = a0(y) + a1(y)z + a2(y)z2 + · · ·
is a generating function for them. They can be recovered by ak(y) = 1

k! (∂
kG/∂zk)(y, 0).

Our interest will be in the following generating functions:

(1) Gpdf(y, z) where ak(y) = fk(y), the PDF for Yk.
(2) Gcdf(y, z) where ak(y) = Fk(y), the CDF for Yk.
(3) Gsucc(y, z) where ak(y) = P(min{Y0, Y1, . . . , Yk} ≤ y), the first above mentioned

measure, the probability of the algorithm’s success at reaching level y or below
by the kth iteration.

(4) Gfm(y, z) where ak(y) = P(N(y) = k), the second above mentioned measure
(this relates to convergence in the sense of arriving at level y, however, we use

1 A similar recursion for the cdfs is possible directly. Note, that at a given state x the conditional
CDF Fx(y) is the piecewise linear function that starts at (0, 0) with slope b(x)/x and at y = x jumps to
1−w(x) and continues with slope w(x)/(1−x). The new state’s CDF is found as a mixture of these cdfs
with respect to the old states, so Fn+1(y) = ∫ 1

0 Fx(y)dFn(x). This gives the recursion for generating
the cdfs, namely F0(y) = y and

Fn+1(y) = Fn(y) − (1 − y)

∫ y

0

w(x)

1 − x
F′

n(x)dx + y
∫ 1

y

b(x)

x
F′

n(x)dx.

J Glob Optim (2007) 37:159–175 163

“fm” as in due course, we show it to be the familiar factorial moment generating
function of N(y)).

We state the main result concerning the explicit formulae for the key generating
functions. These formulae are parts of Theorem 3.4 and Corollary 3.2.

This result and others in this section depend heavily on the following function.

E(y, z, c, d)= 1
1 − zh(y)

exp

(
z

(∫ y

c

w(t)
(1 − t)(1 − zh(t))

dt +
∫ d

y

b(t)
t(1 − zh(t))

dt

))
(2)

For brevity, we denote E(y, z) = E(y, z, 0, 1). We will see later that c and d may be
chosen arbitrarily.

Theorem 3.1 Let Gbase(u, z, x) = ∫ u
x E(t, z, x, x)dt.

Gcdf(y, z) = Gbase(y, z, 0)

(1 − z)Gbase(1, z, 0)
,

Gsucc(y, z) = y/(1 − z)

y + (1 − z)Gbase(1, z, y)
,

Gfm(y, z) = y

y + (1 − z)Gbase(1, z, y)
.

The reader may wish to skip the rest of this section and see the consequences of
the main result.

3.1 Results and proofs

Our path to obtaining these generating functions begins by extending the horizon and
finding the generating functions for the family of processes Yx

k , which we associate
with the original BAS process Yk. These processes are identical to the original one in
every way, except that their hesitation functions are set on [0, x] to be one.2 Yx

k are
“frozen” past level x, thus sample paths for these new processes remain at the first
level hit, which is less than or equal to x.

We denote the corresponding generating functions of this family by Gx:pdf(y, z),
Gx:cdf(y, z), Gx:succ(y, z) and Gx:fm(y, z). Note Gpdf(y, z) = G0:pdf(y, z), etc.

In this section, after establishing various lemmas, we provide the main results,
which describe the family of generating functions and their interrelationships.

Lemma 3.1 (Integral equation). Consider the generating function Gpdf(y, z) for the
PDF for Yk.

∫ 1

0
Gpdf(y, z)dy = 1

1 − z

and it satisfies

G(y, z) = 1 + zh(y)G(y, z) + z
∫ y

0

w(t)
1 − t

G(t, z)dt + z
∫ 1

y

b(t)
t

G(t, z)dt. (3)

2 One could also use processes with w forced to be zero on [0, x]

164 J Glob Optim (2007) 37:159–175

Proof We have Gpdf(y, z) = f0(y) + f1(y)z + f2(y)z2 + · · · . So its integral is 1 + z +
z2 +· · · as required. To produce the required integral equation, we combine the recur-
sion for the probability density functions (1), multiplied by 1, z, z2, etc., as follows.

f0(y) = 1,

zf1(y) = z

(
f0(y)h(y) +

∫ y

0

w(t)
1 − t

f0(t)dt +
∫ 1

y

b(t)
t

f0(t)dt

)

z2f2(y) = z2

(
f1(y)h(y) +

∫ y

0

w(t)
1 − t

f1(t)dt +
∫ 1

y

b(t)
t

f1(t)dt

)

z3f3(y) = z3

(
f2(y)h(y) +

∫ y

0

w(t)
1 − t

f2(t)dt +
∫ 1

y

b(t)
t

f2(t)dt

)

...

As the generating function is a formal series, summing provides the required integral
equation. �

Note, that when using generating functions later, we need z ∈ [0, 1]. For values at
z = 1 or z = 0, we will use the appropriate limit.

Lemma 3.2 For z ∈ (0, 1), the value of (1 − z)
∫ 1

0 E(x, z)dx is finite.

Proof As both worsening and bettering are bounded above by 1, it is easy to check
that (1 − z)E(x, z) ≤ (x(1 − x))−z and that the integral of (i) is

2−1+2 z√π� (−z + 1)

� (−z + 3/2)
,

which is finite for z in the open interval. �

Lemma 3.3 Both G(y, z) = (1 − zh(y))E(y, z) and G(y, z) = (1 − zh(y))Gpdf(y, z)

satisfy the differential equation:

∂

∂y
G(y, z) = z

1 − zh(y)

(
w(y)

1 − y
− b(y)

y

)
G(y, z). (4)

Proof Recalling that b(y) + h(y) + w(y) = 1, the first function is straightforwardly
checked.3 The second is an immediate consequence of Lemma 3.1 obtained by rear-
ranging Eq. (3) and differentiating. �

Lemma 3.4 (Formula for Gpdf) The generating function for the probability density
function fk(y) of Yk is given by

Gpdf(y, z) = E(y, z)

(1 − z)
∫ 1

0 E(t, z)dt
= E(y, z, c, d)

(1 − z)
∫ 1

0 E(t, z, c, d)dt

and thus is independent of c and d.

3 Differentiability of h is not required, as 1 − zh(y) is cancelled in the product defining G(y, z)

J Glob Optim (2007) 37:159–175 165

Proof We first show independence of c and d. Note

E(y, z, c, d) = E(y, z) exp

(
−z

(∫ c

0

w(x)

(1 − x)(1 − zh(x))
dx +

∫ 1

d

b(x)

x(1 − zh(x))
dx

))

so the common factor cancels.4

We have (1 − zh(y))Gpdf(y, z) must be a multiple (by a function depending only
on z) of (1 − zh(y))E(y, z) as the both satisfy the separable DE from Lemma 3.3.
Thus Gpdf(y, z) = K(z)E(y, z). Now, integrating both sides and using the first part of

Lemma 3.1, we have that K(z) must be
1

(1 − z)
∫ 1

0 E(t, z)dt
. �

Lemma 3.5 Gpdf(y, z) = ∂

∂y
Gcdf(y, z).

Proof ∂
∂y Gcdf(y, z) = ∂

∂y

∑∞
k=0 zkFk(y) = ∑∞

k=0 zkfk(y) = Gpdf(y, z). �

Lemma 3.6 Gfm(y, z) = (1 − z)Gsucc(y, z).

Proof As N(y) = mink Yk ≤ y, the event Yi > y for i = 0, . . . , k is equivalent to
N(y) > k. P(min{Y0, Y1, . . . , Yk} ≤ y) = P(N(y) ≤ k) and

Gsucc(y, z) = P(N(y) ≤ 0) + zP(N(y) ≤ 1) + z2P(N(y) ≤ 2) + · · ·
= (1 + z + z2 + · · ·)P(N(y) = 0) + (z + z2 + z3 + · · ·)P(N(y) = 1) + · · ·
= 1

1 − z

(
P(N(y) = 0) + zP(N(y) = 1) + z2P(N(y) = 2) + · · ·

)

= 1
1 − z

Gfm(y, z).
�

The three main theorems that follow describe the generating function for the com-
plete family Gx:pdf(y, z), Gx:cdf(y, z), Gx:succ(y, z) and Gx:fm(y, z).

Theorem 3.2 (Formula for Gx:pdf) The generating function for the PDF f x
k (y) of Yx

k is
given by

Gx:pdf(y, z) =




1/(1 − z)

x + (1 − z)Gbase(1, z, x)
for y ≤ x,

E(y, z, x, x)

x + (1 − z)Gbase(1, z, x)
for y > x,

where

Gbase(u, z, x) =
∫ u

x
E(t, z, x, x)dt.

4 The integrals may diverge if c = 1 or d = 0, giving a ratio of “0/0”, so to avoid taking limits these
values are not used in practice.

166 J Glob Optim (2007) 37:159–175

Proof Gx:pdf(y, z) is just Gpdf(y, z) for the different bettering, hesitation and
worsening functions appropriate to Yx

k. Using superscripts to denote these, formally,
hx is the discontinuous function that is 1 on [0, x] and h on (x, 1] (similarly define bx

and wx to be zero on the initial closed interval). Denote by Ex(y, z, c, d) the analogue
of (2) using hx, bx and wx. The result follows by using Lemma 3.4 with c = d = x and
noting that

Ex(y, z, x, x) =
{

1/(1 − z) for y ≤ x,
E(y, z, x, x) for y > x. �

Note that for y ≤ x, since, the distribution of the first record less than or equal
to y is uniform on [0, y], the generating function in the theorem statement does not
depend on y.

Our, next theorem shows how to move from any one of the three generating
functions to any other.

Theorem 3.3

(1) Gx:succ(y, z) =
{

Gx:cdf(y, z) for y ≤ x,
Gy:cdf(y, z) for y ≥ x,

(2) Gx:cdf(y, z) = ∫ y
0 Gx:pdf(t, z)dt,

(3) Gx:fm(y, z) = (1 − z)Gx:succ(y, z).

Proof For result (1) when y ≤ x, the failure event Yx
k > y for all k = 0, . . . , n is

equivalent to Yx
n > y. This follows since, the process first frozen at x and then frozen

at y is the same as the original process frozen at x. When y ≥ x, the failure event
Yx

k > y for all k = 0, . . . , n is equivalent to Yy
n > y. This follows since, the process first

frozen at x and then frozen at y is the same as the original process frozen at y.
The last two results follow immediately from Lemmas 3.5 and 3.6. �

An immediate consequence provides the generating function for the original BAS
process.

Corollary 3.1 Gsucc(y, z) = Gy:cdf(y, z).

Proof Gsucc(y, z) = G0:succ(y, z) = Gy:cdf(y, z). �

Our final results in this section encompasses the main theorem and further explicit
formulae in terms of the quantity

Gbase(u, z, x) =
∫ u

x
E(t, z, x, x)dt

used in Theorem 3.2.

Theorem 3.4

(1) Gcdf(y, z) = Gbase(y, z, 0)

(1 − z)Gbase(1, z, 0)

(2) Gx:cdf(y, z) =




y/(1 − z)

x + (1 − z)Gbase(1, z, x)
for y ≤ x,

x/(1 − z) + Gbase(y, z, x)

x + (1 − z)Gbase(1, z, x)
for y ≥ x.

J Glob Optim (2007) 37:159–175 167

Proof Formula (1) for Gcdf follows from Lemmas 3.4 and 3.5. To get formula (2)
for Gx:cdf, working with hx, bx and wx define Gx:base(y, z, a) = ∫ y

a Ex(t, z, a, a)dt, so by
the first formula

Gx:cdf(y, z) = Gx:base(y, z, 0)

(1 − z)Gx:base(1, z, 0)
.

Note by checking cases t ≤ x and t ≥ x and using that wx and bx are zero on
[0, x], we have Ex(t, z, 0, 0) = Ex(t, z, x, x). Now,

∫ 1
0 Ex(t, z, 0, 0)dt = ∫ x

0 Ex(t, z, x, x)dt+∫ 1
x Ex(t, z, x, x)dt which, using the formula for Ex in the proof of Theorem 3.2, gives

Gx:base(1, z, 0) = x/(1 − z) + Gbase(1, z, x).

Similarly

Gx:base(y, z, 0) =
{

y/(1 − z) for y ≤ x,
x/(1 − z) + Gbase(y, z, x) for y ≥ x

and the result follows. �

Corollary 3.2

(1) Gx:succ(y, z) =





y/(1 − z)

x + (1 − z)Gbase(1, z, x)
for y ≤ x,

y/(1 − z)

y + (1 − z)Gbase(1, z, y)
for y ≥ x,

(2) Gsucc(y, z) = y/(1 − z)

y + (1 − z)Gbase(1, z, y)
,

(3) Gx:fm(y, z) =




y

x + (1 − z)Gbase(1, z, x)
for y ≤ x,

y

y + (1 − z)Gbase(1, z, y)
for y ≥ x,

(4) Gfm(y, z) = y

y + (1 − z)Gbase(1, z, y)
.

Note, when b = 1 − h, Gfm reduces to the formula for the factorial moment gener-
ating function for HAS given in [5].

4 Applications

This section, contains some illustrations of the application of the theory of the previous
section, then a general result concerning the performance of BAS.

4.1 Factorial moment generating function

It is well known that the factorial moment generating function of N(y), E(zN(y)), is
p0(y) + p1(y)z + p2(y)z2 + · · · where pk(y) = P(N(y) = k) and hence is Gfm(y, z). So
the nth factorial moment is obtained as µ(n)(y) = E(n! (N(y)

n

)
) = (∂nGfm/∂zn)(y, 1). As

an immediate consequence of this we have:

168 J Glob Optim (2007) 37:159–175

Proposition 4.1 For N(y), the expected number of iterations immediately prior to
reaching y,

(1) E(N(y)) = 1
y

∫ 1
y X1(y, t)dt

(2) Var(N(y)) = 1
y2

(∫ 1
y X1(y, t)dt

)2 − 2
y

∫ 1
y X1(y, t)B2(y, t)dt + 1

y

∫ 1
y

1+h(t)
1−h(t) X1(y, t)dt,

where

B1(y, t) =
∫ t

y

{
w(x)

1 − x
− b(x)

x

}
dx

b(x) + w(x)
,

B2(y, t) =
∫ t

y

{
w(x)

1 − x
− b(x)

x

}
dx

(b(x) + w(x))2 ,

X1(y, t) = E(t, 1, y, y) = exp(B1(y, t))
b(t) + w(t)

.

Proof E(N(y)) = µ(1)(y) and Var(N(y)) = µ(2)(y) + µ(1)(y) − (µ(1)(y))2. Using the
formula of the factorial moment generating function in Corollary 3.4, Maple gives the
required result. �

Note that a non-obvious rearrangement (verified by Maple) for E(N(y)) is

1 − y
y

∫ 1

y

1
(1 − t)(1 − h(t))

exp

(∫ t

y

−b(x)

x(1 − x)(1 − h(x))
dx

)
dt.

By differentiating it with respect to y, it reduces to the differential equation,

y(1 − y)(1 − h(y))(E(N(y)))′ + w(y)E(N(y)) + 1 − y = 0

with initial condition E(N(1)) = 0, shown independently in [3].
Also if the BAS has absorbing states other than the global optimum, the moments

can be infinite.

4.2 Examples

We give some explicit examples. The use of Maple is acknowledged. The first relates
to PAS.

Example 4.1 For b(x) = γ and w(x) = 0,

Gsucc(y, z) = 1
1 − z

y

1 − z
1 − z + zγ ,

Gfm(y, z) = y

1 − z
1 − z + zγ ,

E(N(y)) = − ln y
γ

.

Another simple version of HAS.

J Glob Optim (2007) 37:159–175 169

Example 4.2 For b(x) = βx and w(x) = 0,

Gcdf(y, z) = y(zβ + 1 − z)

(1 − z + zβy)(1 − z)
,

Gpdf(y, z) = zβ + 1 − z
(1 − z + zβy)2 ,

Gsucc(y, z) = y(zβ + 1 − z)

(1 − z + zβy)(1 − z)
,

Gfm(y, z) = y(zβ + 1 − z)

1 − z + zβy
,

E(N(y)) = 1 − y
βy

.

The next specific example of backtracking has very complicated generating func-
tions, but the expected number of iterations is simply expressed.

Example 4.3 For b(x) = 1/2 and w(x) = 1/2,

E(N(y)) =
√−y + 1

(
π − 2 arcsin

(√
y
))

√
y

.

Although the explicit forms of the various generating functions have been given,
we now give two differential equations that they solve. They can be verified by substi-
tuting the given functions into the stated differential equations.

Lemma 4.1 Let G′ denote the partial derivative of G with respect to y, p = (y(1−y)(1−
zh(y))), q = zw(y) + (1 − z)(1 − y) and r = −zw(y). Then

(1) G = Gfm(y, z) satisfies the differential equation pG′ = qG + rG2 with initial
condition G(1, z) = 1, and

(2) G = Gsucc(y, z) satisfies the differential equation pG′ = qG + r(1 − z)G2 with
initial condition G(1, z) = 1/(1 − z).

For HAS where h = 1 − b, the differential equation for Gfm reduces to the one in [5].
An unexpected discovery came from looking at the success probabilities of a num-

ber of examples. Any algorithm can easily be modified to accept only improving points
(hence forcing h(x) = 1−b(x).) We found that sometimes this improves the algorithm,
sometimes it has no effect and sometimes it even degrades performance. We explore
this further in Sect. 5. The following consequence of our results shows that BAS with
b(x)/x constant has performance independent of hesitation and worsening.

Proposition 4.2 For b(x) = βx and any h and w, Gsucc(y, z) and Gfm(y, z) are as in
Example 4.2.

Proof Substitute Gsucc in the differential equation of Lemma 4.1. �

Note, however, that Gpdf and Gcdf do depend on h and w.
A special case of the above example relates to Pure Random Search (PRS) where

each iteration is chosen independently, and thus b(x) = x. In this case

Gsucc(y, z) = y
(1 − z + zy)(1 − z)

.

170 J Glob Optim (2007) 37:159–175

So the probability of success P(min{Y0, Y1, . . . , Yk} ≤ y) = 1 − (1 − y)k from kth
term of the generating function. As noted the cdf depends on h and w. PRS as
usually implemented, simply accepts each iteration, thus w(x) = 1 − x. In this case
Gcdf(y, z) = y/1 − z and gives cdfs of P(Yk ≤ y) = y at each iteration. However,
by never accepting worsening iterations, PRS can be implemented as HAS with
h(x) = 1 − x. For any HAS, Gcdf(y, z) = Gsucc(y, z), so in this case gives cdf of
1 − (1 − y)k for iteration k. This illustration reinforces that the probability of success
is the useful measure of performance.

The following examples show that in certain cases it is better to avoid hesitating. It
compares the two extremes of BAS. This first is an HAS.

Example 4.4 For b(x) = x2 and w(x) = 0,

Gsucc(y, z) = y/(1 − z)√
1 − z + zy2

and E(N(y)) = 1 − y2

2y2 .

The first few values of success probabilities P(min{Y0, Y1, . . . , Yk} ≤ y) are: y,
−1/2

(
y2 − 3

)
y, 1/8

(
3 y4 − 10 y2 + 15

)
y, and −1/16

(
5 y6 − 21 y4 + 35 y2 − 35

)
y.

The following has the same bettering function, but never hesitates.

Example 4.5 For b(x) = x2 and w(x) = 1 − x2,

Gsucc(y, z) = zy/(1 − z)

zy − zez(1−y) + z + ez(1−y) − 1
and E(N(y)) = 1

y
(e1−y − 1).

The first few values of success probabilities P(min{Y0, Y1, . . . , Yk} ≤ y) are: y,
−1/2

(
y2 − 3

)
y, 1/12

(
3 y4 + 2 y3 − 12 y2 − 6 y + 25

)
y,

and −1/24
(
3 y6 + 4 y5 − 14 y4 − 20 y3 + 35 y2 + 32 y − 64

)
y.

Figure 1 supports that the second example dominates the first. In the next section,
we prove this is always the case for a bettering, which has b(x)/x increasing.

There is some interest in the case, where there is no hesitation (i.e. h(y) = 0)
since if such a process is understood, it can be “stopped” to explore the more general
BAS with non-zero hesitation. The various theorems and propositions become slightly
simpler when h(x) = 0 and w(x) = 1 − b(x).

Applied to global optimisation, these results provide a standardized measure of
performance. The graph of success versus number of iterations, however, is still flawed,
in that iterations are not directly comparable. One algorithm’s iteration may be more
costly than that of another. A method can be slowed down to compensate for a cost,
and the expected number of iterations changes proportionally (although the other
moments do not). We have,

Proposition 4.3 Let c > 1. Let Y(c)
k be a new process using w/c and b/c for the wors-

ening and bettering functions. Then E(N(c)(y)) = cE(N(y)).

Proof Replace w(x) and b(x) by w(x)/c and b(x)/c in the formula for E(N(y)) in
Proposition 4.1. �

Empirically, we observe that often, for each level of success, N(c)(y) is approxi-
mately c times N(y). It is easy, however, to create examples that show this is only an
approximation.

Empirical tests led to the discovery of Proposition 4.2. Those tests support a further
conjecture: that two hesitant adaptive searches have similar performance if the slope
of the bettering is the same at zero. This is shown in Figs. 2 and 3.

J Glob Optim (2007) 37:159–175 171

Fig. 1 Ratios of success
probabilities of example 4.5
compared to example 4.4 (for
k = 1, 2, . . . , 9 from bottom to
top)

0.60 0.40.2

1.5

1.4

1.1

y
0.8

1.6

1.2

1
1

1.3

5 A general performance result

In this section, we imagine the bettering function b to be fixed, and investigate how
the allocation of the remaining probability 1−b between the hesitation and worsening
functions h and w affects performance. We saw in Proposition 4.2 that a BAS with
bettering such that b(x)/x is constant (i.e., b(x) = βx) has performance independent
of w and h. Ordinarily one imagines that it is advantageous to hesitate rather than to
worsen. In fact, this partly depends on the function b(x)/x: it turns out that if b(x)/x is
decreasing, then hesitation is preferable, but if b(x)/x is increasing, then “worsening”
becomes preferable to hesitation.

The following relates the success probabilities of BAS methods with the same
bettering.

Theorem 5.1 Let BAS(b, h, w) denote the Markov chain in the range [0, 1] resulting
from the standardised BAS algorithm with probability functions b, h and w defined on
[0, 1]. Let Nh(y), N(y) and Nw(y) be the numbers of iterations required respectively by
BAS(b, h + w, 0), BAS(b, h, w) and BAS(b, 0, h + w) to have sampled a value less than
or equal to y. For each iteration k as follows:

(1) if b(x)/x is decreasing, then hesitation is preferable to worsening, in that

P(Nh(y) ≤ k) ≥ P(N(y) ≤ k) ≥ P(Nw(y) ≤ k);

(2) if b(x)/x is constant, then

P(Nh(y) ≤ k) = P(N(y) ≤ k) = P(Nw(y) ≤ k);

(3) if b(x)/x is increasing, then worsening is preferable to hesitation, in that

P(Nh(y) ≤ k) ≤ P(N(y) ≤ k) ≤ P(Nw(y) ≤ k).

172 J Glob Optim (2007) 37:159–175

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

P
ro

ba
bi

lit
y

of
 S

uc
ce

ss

Fig. 2 Similar performance of two HASs (the upper with b(x) = xex/3 and the lower with b(x) = x/3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

pr
ob

ab
ili

ty

Fig. 3 The associated betterings functions are tangent at x = 0 (solid lines give bettering functions,
dotted lines give worsening functions)

Note that P(N(y) ≤ k) is just the coefficient of zk in Gsucc for the corresponding
BAS process.

Proof Part (2) is simply a restatement of Proposition 4.2. Part (1) can be estab-
lished by induction in a straightforwards manner, although an analogue of the more
complicated argument we present for (3) will also work.

Now consider the second inequality of (3). For each n ∈ {0, 1, 2, . . .}, let (Y(n)

k) be an
inhomogeneous Markov chain with Y0 distributed uniformly on [0, 1], and such that

J Glob Optim (2007) 37:159–175 173

the n transitions from Y0 to Yn are according to the kernel BAS(b, 0, h + w), and all
subsequent transitions are according to the kernel BAS(b, h, w). Now (Y(0)

k) is simply

BAS(b, h, w), whereas in the limit as n → ∞, (Y(n)

k) becomes BAS(b, 0, h + w). For
each y ∈ [0, 1] and n ∈ {0, 1, 2, . . . , }, let N(n)(y) be the random variable

min{k : Y(n)

k ≤ y}
so that N(0)(y) = N(y) and N(k)(y) → Nw(y) as k → ∞. We will demonstrate that

P
[
N(n+1)(y) ≤ k

]
≥ P

[
N(n)(y) ≤ k

]
, (5)

implying the second inequality of (3).
The chains (Y(n)

k) and (Y(n+1)

k) are identical up to iteration n, inclusively, so that (5)
is trivial if k ≤ n. Thus assume k > n. Note, that P[N(n)(y) ≤ n] and P[N(n+1)(y) ≤ n]
are equal; denote this shared probability by π . Further, the distributions of Y(n)

n con-
ditioned on N(n)(y) > n and of Y(n+1)

n conditioned on N(n+1)(y) > n are identical;
denote this shared distribution by F.

Now P[N(n+1)(y) ≤ k]

= π + (1 − π)P
(

N(n+1)(y) ≤ k
∣∣∣N(n+1)(y) > n

)

= π + (1 − π)

∫

t∈(y,1]
P

(
N(n+1)(y) ≤ k

∣∣∣N(n+1)(y) > n and Y(n+1)
n = t

)
dF(t)

= π + (1 − π)

∫

t∈(y,1](
(h(t) + w(t))P

(
N(n+1)(y) ≤ k

∣∣∣N(n+1)(y) > n and Y(n+1)

n+1 > Y(n+1)
n = t

)

+ b(t)P
(

N(n+1)(y) ≤ k
∣∣∣N(n+1)(y) > n and Y(n+1)

n+1 < Y(n+1)
n = t

))
dF(t).

Letting (Yk) denote BAS(b, h, w), we can rewrite the above as

π + (1 − π)

∫

t∈(y,1]

(
(h(t) + w(t))P

(
N(y) ≤ k

∣∣N(y) > n and Yn+1 > Yn = t
)

+ b(t)P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 < Yn = t
))

dF(t)

because the chains (Yk) and (Y(n+1)

k) have identical kernels for all transitions from
iteration n + 1 onwards. Similarly P[N(n)(y) ≤ k] is

π + (1 − π)

∫

t∈(y,1]

(
h(t)P

(
N(y) ≤ k

∣∣N(y) > n and Yn+1 = Yn = t
)

+w(t)P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 > Yn = t
)

+ b(t)P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 < Yn = t
)
)

dF(t).

174 J Glob Optim (2007) 37:159–175

Thus P[N(n+1)(y) ≤ k] − P[N(n)(y) ≤ k]

= (1 − π)

∫

t∈(y,1]
h(t)

(
P

(
N(y) ≤ k

∣∣N(y) > n and Yn+1 > Yn = t
)

− P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 = Yn = t
))

dF(t).

Therefore (5) follows if, we can show that

P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 > Yn = t
)

≥ P
(
N(y) ≤ k

∣∣N(y) > n and Yn+1 = Yn = t
)

whenever k > n and t > y. Since, (Yk) is homogeneous, this is equivalent to

P (N(y) ≤ 	 |Y0 > t) ≥ P (N(y) ≤ 	 |Y0 = t)

for 	 ≥ 0. Let N(t−) denote min{k : Yk < t}. With Yo ≥ t, the value YN(t−) is
independent of Y0, N(t−) and YN(t−)−1; straightforwards calculation shows that

P(Yk ≤ yk|Y0 = y0 and N(t−) = k and Yk−1 = yk−1) = yk/t

whenever yk < t ≤ yk−1. Thus, by the Markov property, the sequence (YN(t−),
YN(t−)+1, . . .) is independent of Y0 and N(t−), and in particular N(y) − N(t−) is
independent of Y0 and N(t−). Thus, it suffices to show that

P (N(t−) > 	 |Y0 > t) ≤ P (N(t−) > 	 |Y0 = t) (6)

(we have reversed the order of inequality for convenience).
For each k, let πk = P

(
Yk ≥ t

∣∣Y0 > t and Y1, . . . , Yk−1 ≥ t
)
. By the definition of

BAS and the fact that b(t)/t is increasing, πk ≤ 1 − b(t) for each k. Now

P (N(t−) > 	 |Y0 > t) = π1π2 · · · π	.

On the other hand, P (N(t−) > 	 |Y0 = t)

= P (Y	 = · · · = Y1 = t |Y0 = t)

+
	∑

k=1

P
(
Yk−1 = · · · = Y1 = t and Yk > t and Yk+1, . . . , Y	 ≥ t

∣∣Y0 = t
)

= (1 − b(t) − w(t))	 +
	∑

k=1

w(t)(1 − b(t) − w(t))k−1π1 · · · π	−k

≥ π1 · · · π	




(
1 − b(t) − w(t)

1 − b(t)

)	

+ w(t)
1 − b(t)

	−1∑
j=0

(
1 − b(t) − w(t)

1 − b(t)

)j



= π1 · · · π	,

implying (6) and thence (5) and the second inequality of (3).
The first inequality of (3) can be established by a similar argument, in which the

family of inhomogeneous chains (Y(n)

k) is defined to tend to BAS(b, h + w, 0) rather
than BAS(b, 0, h + w). �

J Glob Optim (2007) 37:159–175 175

6 Summary

An alternative analysis of (standardized) backtracking adaptive search (Sect. 2) has
been presented. Generating functions (Sect. 3) have been established for three quan-
tities of interest: the distribution of the objective function value at the kth iteration,
the distribution of the best value at the kth iteration and the number of iterations
to convergence. Examples, to illustrate the power of the methods have been pre-
sented (Sect. 4) and a general result given (Sect. 5) relating algorithm improvement
propensity to the need to backtrack.

Acknowledgements The authors would like to thank the Marsden Fund of the Royal Society of
New Zealand for support of this research.

References

1. Bulger, D.W., Wood, G.R.: Hesitant adaptive search for global optimisation. Math. Program. 79,
89–102 (1998)

2. Bulger, D.W., Baritompa, W.P., Wood, G.R.: Implementing Pure Adaptive Search with Grover’s
Quantum Algorithm. J. Optim. Theory Appl. 116, 517–529 (2003)

3. Bulger, D.W., Alexander, D.L.J., Baritompa, W.P., Wood, G.R., Zabinsky, Z.B.: Expected Hitting
Times for Backtracking Adaptive Search. Massey University Technical Report, IIST (2002)

4. Reaume, D.J., Romeijn, H.E., Smith, R.L.: Implementing pure adaptive search for global optimi-
zation using Markov chain sampling. J. Global Optim. 20(1), 33–47 (2001)

5. Wood, G.R., Zabinsky, Z.B., Kristinsdottir, B.P.: Hesitant adaptive search: the distribution of the
number of iterations to convergence. Math. Program. 89, 479–486 (2001)

6. Wood, G.R., Alexander, D.L.J., Bulger, D.W.: Approximation of the distribution of convergence
times for stochastic global optimisation. J. Global Optim. 22(1), 271–284 (2002)

7. Wood, G.R., Bulger, D.W., Baritompa, W.P., Alexander, D.L.J.: Backtracking adaptive search: the
distribution of the number of iterations to convergence. J. Optim. Theory Appl. 128 (2006), to
appear.

8. Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Program. 53,
323–338 (1992)

